Characterization of enantiomeric bile acid-induced apoptosis in colon cancer cell lines.

نویسندگان

  • Bryson W Katona
  • Shrikant Anant
  • Douglas F Covey
  • William F Stenson
چکیده

Bile acids are steroid detergents that are toxic to mammalian cells at high concentrations; increased exposure to these steroids is pertinent in the pathogenesis of cholestatic disease and colon cancer. Understanding the mechanisms of bile acid toxicity and apoptosis, which could include nonspecific detergent effects and/or specific receptor activation, has potential therapeutic significance. In this report we investigate the ability of synthetic enantiomers of lithocholic acid (ent-LCA), chenodeoxycholic acid (ent-CDCA), and deoxycholic acid (ent-DCA) to induce toxicity and apoptosis in HT-29 and HCT-116 cells. Natural bile acids were found to induce more apoptotic nuclear morphology, cause increased cellular detachment, and lead to greater capase-3 and -9 cleavage compared with enantiomeric bile acids in both cell lines. In contrast, natural and enantiomeric bile acids showed similar effects on cellular proliferation. These data show that bile acid-induced apoptosis in HT-29 and HCT-116 cells is enantiospecific, hence correlated with the absolute configuration of the bile steroid rather than its detergent properties. The mechanism of LCA- and ent-LCA-induced apoptosis was also investigated in HT-29 and HCT-116 cells. These bile acids differentially activate initiator caspases-2 and -8 and induce cleavage of full-length Bid. LCA and ent-LCA mediated apoptosis was inhibited by both pan-caspase and selective caspase-8 inhibitors, whereas a selective caspase-2 inhibitor provided no protection. LCA also induced increased CD95 localization to the plasma membrane and generated increased reactive oxygen species compared with ent-LCA. This suggests that LCA/ent-LCA induce apoptosis enantioselectively through CD95 activation, likely because of increased reactive oxygen species generation, with resulting procaspase-8 cleavage.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of bile salt-induced apoptosis in colon cancer cell lines.

Bile salts have been shown to be involved in the etiology of colorectal cancer. Although there is a large body of evidence for bile salts as a cocarcinogen in azoxymethane-induced colorectal cancer, bile salt-induced apoptosis of colorectal cancer cells has not yet been studied in detail. Therefore, we investigated the effects of different bile salts on apoptosis and apoptotic signaling in colo...

متن کامل

Effects of Trichostatin A on the Histone Deacetylases (HDACs), Intrinsic Apoptotic Pathway, p21/Waf1/Cip1, and p53 in Human Neuroblastoma, Glioblastoma, Hepatocellular Carcinoma, and Colon Cancer Cell Lines

Background:  The aberrant and altered patterns of gene expression play an important role in the biology of cancer and tumorigenesis. DNA methylation and histone deacetylation are the most studied epigenetic mechanisms. Histone deacetylase inhibitors (HDACIs) such as valproic acid (VPA) and trichostatin A (TSA) are a group of anticancer compounds for the treatment of solid and hematological canc...

متن کامل

Cancer Cell Lines Characterization of Bile Salt-induced Apoptosis in Colon

Bile salts have been shown to be involved in the etiology of colorectal cancer. Although there is a large body of evidence for bile salts as a cocarcinogen in azoxymethane-induced colorectal cancer, bile salt-induced apoptosis of colorectal cancer cells has not yet been studied in detail. Therefore, we investigated the effects of different bile salts on apoptosis and apoptotic signaling in colo...

متن کامل

Possible Involvement of a Specific Cell Surface Receptor for Calprotectin-Induced Apoptosis in Colon Adenocarcinoma and Carcinam Cell Lines (SW742 and HT29/219)

Calprotectin, a calcium-bound protein complex, is abundant in the cytosol of neutrophils. It has been reported that this protein has an apoptotic activity in tumor cells. Since calprotectin increases in colorectal cancer, this study was conducted to investigate, for the first time, the cytotoxicity/apoptotic effect of calprotectin on HT29/219 and SW742 colon carcinoma and adenocarcinoma cell li...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 284 5  شماره 

صفحات  -

تاریخ انتشار 2009